Binomial Formula Problem



c) If n = 10 and p = 0.60, find P(x ≥ 7)

This is an at least problem, i.e. at least 7.

 

P(x ≥ 7) = 1 – P(x = 0) - P(x = 1) - P(x = 2) - P(x = 3) - P(x = 4) - P(x = 5) - P(x = 6)

 

P(x=r)

 

nCx

px

qn-x

 

 

P(x=0)

=

1

1.00000

0.00010

=

0.0001

P(x=1)

=

10

0.60000

0.00026

=

0.0016

P(x=2)

=

45

0.36000

0.00066

=

0.0106

P(x=3)

=

120

0.21600

0.00164

=

0.0425

P(x=4)

=

210

0.12960

0.00410

=

0.1115

P(x=5)

=

252

0.07776

0.01024

=

0.2007

P(x=6)

=

210

0.04666

0.02560

=

0.2508

 

 

 

 

 

 

 

 

 

 

P(x=0) + ,,, + P(x=6) =

0.6177

 

P(x≥7) = 1 - P(x=0) - P(x=1) - … - P(x=6) =

0.3823

 

 

d) If n = 12 and p = 0.45, find P(5 ≤ x ≤ 7)

Tip:      P(5 ≤ x ≤ 7) = P(X = 5) + P(X = 6) + P(X = 7)

 

 

 

 

 

 

 

 

 

 

 

 

 


P(x=r)

 

nCx

px

qn-x

 

 

P(x=5)

=

792

0.018453

0.015224

=

0.222498

P(x=6)

=

924

0.008304

0.027681

=

0.212385

P(x=7)

=

792

0.003737

0.050328

=

0.148945

 

 

 

P(5 ≤ x ≤ 7)

=

0.583828